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AXTAL COMPRESSION OF AN INHOMOGENEOUS CONE

M. A, Zadoyan and N. B. Safaryan UDC 539.376

A concentrated axial force is applied to the apex of an infinite cone. The material
is assumed to be incompressible, inhomogeneous, and conforming to the power law of rein-
forcement. The compression of this cone is investigated. The corresponding homogeneous
problem was studied in [1, 2].

Differential equations of equilibrium for an axisymmetric deformation in spherical
coordinates in the usual notations appear as

8 o,
Oy L 284 L (20, — 05— 0p+ Troctg ) =0, (1)

or r

07, { 90g 1 —
—= + — + — [(og — 0p) ctg 6 + 31.9] =0,

at, 1 07 1 _
.._a;w_ +— 0?;" + — (3779 + 27ap ctg ) = 0.

The reinforcement law for this material is
6, =ko®) ey, 0<m<1, (2)

where k is a constant; w(6) is a given function determined experimentally;

1 9 2 o 2 3
0y = 35 V@ — 00" + (00— Oo)* + (04 — 00" + 6 (tho + T + The),

g = ]/% V (e — e + (€5 — o) + (20 — &) + 6 (¥i0 + Véo + Vo)
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are the intensities of tangential stresses and shear strains, respectively.

The relations between the components of strains, displacements, and stresses in case
of axisymmetric strain are defined by the expressions
av v i ou

du u 1 v _u v 9 __ Yz —
€& = —— 89 = T—de’%*?+7°tge'-?r6*w -t T @ (3)
1 dw w _ e w
2?6¢:T gﬁ——TCtge’ 2¥rg = ar r’

= —_g—k—”mw_”m (8)oy/ ™ (01, — 81,0)

i

[éij is the Kronecker symbol, o = (1/3)(o,. + 0g + 0 ¢ ) is the average stress]. The dis-

placement components that satisfy the incompressibility condition can be expressed as
u(r, 8y = Art™2['(8) 4 {(B) cig 6],
v(r, 8) = A — 3)rt™Mp(8), w(r, 8) = 0,

where A and A are unknown constant parameters and ¥(6) is an arbitrary unknown function to
be defined.

(4)

Proceeding from relations (3) and (4), we have for the stress components the expres-
sions

0, = Gy — 24Tk (2 — 3)p'(8) + Ap(6) ctg B]w(6)y(6),

Gy = 0p — 24™k(A — 3)r "™ ['(8)— W(6) ctg Blw(8)1(6),

T = ATRr Y (8) + (b ctg 0)' + A3 — M)p(0) Jw(8)1(0),
Trp = O’ Tog = 0’

(5)

where
x(8) = {["'(8) + (P ctg 8)" + M3 — Anp()1* +
4G — B BWO) - $(O) ctg? 0) + 402 — IOy (0) ctg 6} (6)
Substituting stress expressions (5) into the first equilibrium equation in (1), we
obtain after integration

_‘i"_n’;jni’f {2 (hm — 2) [(2h — 3) ¥’ (8) + Mp(6) ctg 0] w (8) y (6) + (7)
+ (9" (8) + (petgB) + 2B - (0) o (0) ¢ (O)]" +

+ 197 (0) + (Wetg 6) + A (3 — A) P (8)] @ (6) x (B)ctg 6 + 2 (A — 3) [H'(0) — ¥ (B) ctg 6] ® (6) 1 () + ¢

Og =

(c is the integration constant).

The boundary conditions of this problem are the following:
g =Trg=0at 0=a;7=0,v=0 at 9 =0, (8)

They are combined with the condition of static equilibrium of an imaginary conical body
bounded by an arbitrary spherical surface of radius r with its center at the apex:

o

p+2n'Y(0r0056—TT.gsinG)rZSinGdﬁzo. (%)
0

By virtue of (9), Am = 2 and ¢ = 0. Satisfying this second equilibrium equation in (1) in
the search for the unknown function ¥(6), we obtain a fourth-order nonlinear ordinary differ-
ential equation:

[ + (b ctg )" + A3 — Moyl + " + (P ctg 6)' +
+ M3 — Moy ctg 0] 4+ 217 + (pctg 0) 4+ A3 — Mploy + (10)
420 — I — P ctg Doyl + 4 — 3)W" — P ctg B)oy ctg § = 0.

Equation (10) is solved numerically. It is convenient to reduce this equation to a set
of four first-order differential equations:

T=s—Petg 8,5 =1 — A3 — AN, (11)
, F—T

T = o+ (m—1) sz(m—:i)/(m_l)’ Fr=— 2T(‘°X —4 (}" - 3) (S - 21!') ctg 9) wy ctg 9,
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where x = {12 + 4(A? = 31 + 3)s? — 4(A — 3)%(s — ¥ ctg 8)y ctg 9)(m—1)/2;

’ T = o'ty + oty ctg 0 + 20 — 3)(s — 2y ctg By +
+ ((m — 1)/2)ym=3/m=1D{8(A* — 3\ + 3)s[t — M3 — Al
— 4 — 3)*[(v — M3 — M — (s — P ctg 8) ctg 0 + WP/sin? ONp ctg O -
+ (s — P ctg 6)((s — P ctg 8) ctg 8 — P/sin® 0)1).

The boundary conditions of problem (8) for system (11) appear as
Y=0,7=0a 6=0;F=0,1=0 at § = a. (12)

The final formulas for stresses and displacements (4)-(7) can be written as

o, — (A™KI2r)F(O)— 412N — 3)5(8) + (3 — Mp(6) ctg Bl (0)1(0)),
0o = (A™H2r)[F(8)— 40 — 3)(s(O)— 24(6) ctg B)a(8)x(0)],

oo = (A™KI2r2)F(), 1,9 = (A™k/r*)T(0)@(0)x(0),

T = 0, Tge = 0, u = Ar's(0), v = A(A — 3)r'™Mp(6), w = 0.

The unknown constant A is determined from the condition of static equilibrium (9).

On the basis of numeric solution of the boundary-value problem (11) and (12), we plot-
ted on an ES-1022 computer, by the zero-in method of [3], the curves of relative stresses
035% = (2r?/A™k)+035 at a = 7/6 and the inhomogeneity w(8) = exp (u8) (see Fig. 1; solid
lines refer to an inhomogeneous material; dashed lines refer to a homogeneous material).
For this numeric example we assumed u = 2.098.

The inhomogeneity of the mechanical properties of materials can be due to a variety
of factors: the effect of the elementary particle flux, temperature gradients, nonuniform
reinforcement of the material, surface finishing, etc.

A comparison of these data with the results of a homogeneous material indicates that
the inhomogeneity has a significant effect on the stressed—strained state.
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